Bijections for ternary trees and non-crossing trees
نویسندگان
چکیده
منابع مشابه
Bijections for ternary trees and non-crossing trees
The number Nn of non-crossing trees of size n satis/es Nn+1 = Tn where Tn enumerates ternary trees of size n. We construct a new bijection to establish that fact. Since Tn =(1=(2n+ 1))( 3n n ), it follows that 3(3n− 1)(3n− 2)Tn−1 = 2n(2n+ 1)Tn. We construct two bijections “explaining” this recursion; one of them easily extends to the case of t-ary trees. c © 2002 Elsevier Science B.V. All right...
متن کاملBijections for 2-plane trees and ternary trees
According to the Fibonacci number which is studied by Prodinger et al., we introduce the 2-plane tree which is a planted plane tree with each of its vertices colored with one of two colors and qqppppppppppppppppp -free. The similarity of the enumeration between 2-plane trees and ternary trees leads us to build several bijections. Especially, we found a bijection between the set of 2-plane trees...
متن کاملBijections for Cayley trees, spanning trees, and their q-analogues
We construct a family of extremely simple bijections that yield Cayley’s famous formula for counting trees. The weight preserving properties of these bijections furnish a number of multivariate generating functions for weighted Cayley trees. Essentially the same idea is used to derive bijective proofs and q-analogues for the number of spanning trees of other graphs, including the complete bipar...
متن کاملMultichains, non-crossing partitions and trees
In a previous paper El], we proved results -about the enumer;ation of certain types of chains in the non-crossing partition lattice T, and its, generalizations. In this paper we present bijections to certain classes of trees which reprove one theorem [l, Corollary 3.41 and provide a combinatoridi proof for the other [I, Theorem 5.31. We begin with a review of the definitions. A set partition X ...
متن کاملPattern Avoidance in Generalized Non-crossing Trees
Abstract. In this paper, the problem of pattern avoidance in generalized non-crossing trees is studied. The generating functions for generalized non-crossing trees avoiding patterns of length one and two are obtained. Lagrange inversion formula is used to obtain the explicit formulas for some special cases. Bijection is also established between generalized non-crossing trees with special patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2002
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(01)00282-5